

Toolboxes for SuperFastLearning digital contents in STEM

Questions

Kahoot! for formative assessment										
Kahooti Summary										
Rank	Player	Total Score (points)	Q1	How a class is drawn?	02	What is a class diagram?	Q3	to ensure that the system is usable, effective and officiant	Q4	What is UML?
	I A	7683		A class is drawn as a rectangle with two compartments !		A class diagram is a type of implementation diagram.		True		It is a tool for representing, designing, and documenting software
-	В	7539		A class is drawn as a rectangle with three compartments !		It describes the structure of a system.		True		It is a tool for representing, designing, and documenting software
:	c c	7237		A class is drawn as a rectangle with three compartments!		It describes the structure of a system.		False		It is a tool for representing, designing, and documenting software
-	D	7141		A class is drawn as a rectangle with three compartments !		A class diagram is a type of implementation diagram.		True		UML stands for Unified Mapping Language
	E	6418				It describes the structure of a system.		True		It is a tool for representing, designing, and documenting software
	F	6248				A class diagram is a type of implementation diagram.		True		It is a tool for representing, designing, and documenting software
1	G	6209		A class is drawn as a rectangle with three compartments!		It describes the structure of a system.		False		It is a tool for representing, designing, and documenting software
	н	5817		A class is drawn as a rectangle with two compartments !		It describes the structure of a system.		True		
1	ı	5573		A class is drawn as a rectangle with three compartments !				True		It is a tool for representing, designing, and documenting software
10	L	5279				It describes the structure of a system.		False		It is a tool for representing, designing, and documenting software
11	м	4939		A class is drawn as a rectangle with three compartments!		It describes the structure of a system.		True		UML stands for Unified Mapping Language
12	N	4747		A class is drawn as a rectangle with two compartments!		It describes the structure of a system.		True		UML stands for Unified Mapping Language
10	0	4628						True		UML stands for Unified Mapping Language
14	P	4429		A class is drawn as a rectangle with two compartments !		A class diagram is a type of implementation diagram.		True		It is used for designing, and documenting software
15	0	4193				A class diagram is a type of implementation diagram.		True		It is a tool for representing, designing, and documenting software
16	R	4021				It describes the structure of a system.		True		It is a tool for representing, designing, and documenting software
17	8	3849		It is drawn as a rectangle and a set of required and provided interfaces!		A class diagram is a type of implementation diagram.		True		It is used for designing, and documenting software
18	T	3839		A class is drawn as a rectangle with two compartments !		It is a type of behavioural diagram the describes how the system behaves.		True		UML stands for Unified Mapping Language
11	u	3639						True		It is a tool for representing, designing, and documenting software
20	w	3618		A class is drawn as a rectangle with three compartments !		A class diagram is a type of implementation diagram.		True		UML stands for Unified Mapping Language
2	×	3279		A class is drawn as a rectangle with two compartments !		It is a type of behavioural diagram the describes how the system behaves.		True		UML stands for Unified Mapping Language
22	Y	2986		It is drawn as a rectangle and a set of required and provided interfaces!		It describes the structure of a system.		True		It is a tool for representing, designing, and documenting software
23	z	2917		It is drawn as a rectangle and a set of required and provided interfaces!		A class diagram is a type of implementation diagram.		True		It is used for designing, and documenting software
24	. AA	537				it describes the structure of a system.				UML stands for Unified Mapping Language
25	88	0								

	Q5	What is meant by a sequence diagram?	Q6	Enumerations	Q7	You are given the following clipping of a UML2 class diagram. Which of the following statements is true?	Q8	Which of the following statements is true?
It is a tool for representing, designing, and documenting software				have the keyword < <enumeration>>.</enumeration>		One object of B is associated with 1* objects of D.		Operations may have parameters and return values.
It is a tool for representing, designing, and documenting software				are data type which instances form a list of named literal values.		One object of B is associated with 1* objects of D.		Operations may have parameters and return values.
It is a tool for representing, designing, and documenting software		It is a type of UML diagram that shows the order of execution of a system.		are data type which instances form a list of named literal values.		One object of D is associated with at least one object of B.		Operations may have parameters and return values.
		It implements the sequence of actions that a system must execute.		are data type which instances form a list of named literal values.		One object of D is associated with at least one object of B.		Operations may have parameters and return values.
It is a tool for representing, designing, and documenting software		It implements the sequence of actions that a system must execute.		have the keyword < <enumeration>>.</enumeration>				Operations may have parameters and return values.
It is a tool for representing, designing, and documenting software		It is a type of UML diagram that shows the order of execution of a system.		are data type which instances form a list of named literal values.		One object of D is associated with at least one object of B.		Operations may have parameters and return values.
It is a tool for representing, designing, and documenting software		It is a type of UML diagram that shows the order of execution of a system.		are data type which instances form a list of named literal values.		One object of B is associated with 1* objects of D.		Operations may have parameters and return values.
		It is a type of UML diagram that shows the order of execution of a system.						
It is a tool for representing, designing, and documenting software		It implements the sequence of actions that a system must execute.		have the keyword < <enumeration>>.</enumeration>		One object of D is associated with at least one object of B.		Operations may have parameters and return values.
It is a tool for representing, designing, and documenting software		It implements the sequence of actions that a system must execute.		are data type which instances form a list of named literal values.		One object of D is associated with at least one object of B.		Operations may have parameters and return values.
		It is a type of UML diagram that shows the order of execution of a system.		are data type which instances form a list of named literal values.		One object of D is associated with at least one object of B.		Operations may have parameters and return values.
		It is a type of UML diagram that shows the order of execution of a system.		Skip this question		One object of D is associated with at least one object of B.		Operations may have parameters and return values.
		It is a type of UML diagram that shows the order of execution of a system.		are data type which instances form a list of named literal values.				Operations may have parameters and return values.
		It implements the sequence of actions that a system must execute.		are data type which instances form a list of named literal values.	0	One object of B is associated with 1* objects of D.		Operations may have parameters and return values.
It is a tool for representing, designing, and documenting software		It is a type of UML diagram that shows the order of execution of a system.		are data type which instances form a list of named literal values.		One object of B is associated with 1* objects of D.		Operations may have parameters and return values.
It is a tool for representing, designing, and documenting software		It is a type of UML diagram that shows the order of execution of a system.		are data type which instances form a list of named literal values.		Direct instances of A exist.		Operations may have parameters and return values.
		It implements the sequence of actions that a system must execute.		are data type which instances form a list of named literal values.				Operations may have parameters and return values.
		It implements the sequence of actions that a system must execute.		are data type which instances form a list of named literal values.		One object of D is associated with at least one object of B.		Operations may have parameters and return values.
It is a tool for representing, designing, and documenting software		It is a type of UML diagram that shows the order of execution of a system.		are data type which instances form a list of named literal values.		Direct instances of A exist.		Operations may have parameters and return values.
		It is a type of UML diagram that shows the order of execution of a system.		Skip this question				Operations may have parameters and return values.
		It implements the sequence of actions that a system must execute.		are data type which instances form a list of named literal values.		One object of B is associated with 1* objects of D.		Operations may have parameters and return values.
It is a tool for representing, designing, and documenting software		It implements the sequence of actions that a system must execute.		are data type which instances form a list of named literal values.		One object of B is associated with 1* objects of D.		Operations may have parameters and return values.
		It is a type of UML diagram that shows the order of execution of a system.		are data type which instances form a list of named literal values.				Operations may have parameters and return values.
		It implements the sequence of actions that a system must execute.						
-								

Emplaments the sequence of actions that a Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex implaments the sequence of actions that or execution of a pit.

Ex implaments the sequence of actions that or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Ex a type of UM. diagram that throw the or execution of a pit.

Which of the following compositions (compositions (compositions (compositions) when the compositions (compositions) when the compositions are compositions as a composition, a In a composition accomposition a composition a composition a composition a composition a composition a composition accomposition a composition a composition a composition accomposition accompos

The multiplicity of a compos

When the composite description of the service of th

	Q13	Which of the following statements about the given diagram clipping is true?	Q14	You are given the following sequence diagram. Which traces is possible?	Q15	You are given the following sequence diagram. Which traces is possible?	Q16	In a State Diagram, What does the syntax for labeling a transition look like?
specifies who performs which tasks with a system is developed		B can execute the same use cases as A.		$a \to b \to c$		$a \to b \to c$		event[guard]/effect
specifies who performs which tasks with a system is developed		B can execute the same use cases as A.		$a \to b \to c$		$a \to b \to c$		event[guard]/effect
comprises actors, use cases and functional requirements.		A can execute the same use cases as B.		$a \to b \to c$		no one		event[guard]/effect
specifies who performs which tasks with a system is developed		B can execute the same use cases as A.		$a \to b \to c$		$a \to b \to c$		event[guard]/effect
specifies who performs which tasks with a system is developed		B can execute the same use cases as A.		$a \to b \to c$		$a \to b \to c$		event[guard]/effect
specifies who performs which tasks with a system is developed		B can execute the same use cases as A.		$a \to b \to c$		no one		event[guard]/effect
specifies who performs which tasks with a system is developed		B can execute the same use cases as A.		$a \to b \to c$		$a \to b \to c$		[guard]effect/event
comprises actors, use cases and functional requirements.		B can execute the same use cases as A.		$a \to b \to c$		$a \to b \to c$		[guard]effect/event
specifies who performs which tasks with a system is developed		A can execute the same use cases as B.		$a \to b \to c$		С		[effect]event/guard
comprises actors, use cases and functional requirements.		B can execute the same use cases as A.		$a \to b \to c$		$a \to b \to c \to a \to b$		event[guard]/effect
comprises actors, use cases and functional requirements.		A inherits all of B's associations.				no one		[effect]event/guard
comprises actors, use cases and functional requirements.		B inherits part of A's associations.		$b \to a \to c$		$a \to b \to c$		effect[guard]/event
comprises actors, use cases and functional requirements.		B can execute the same use cases as A.				$a \to b \to c \to a \to b$		event[guard]/effect
specifies who performs which tasks with a system is developed		B inherits part of A's associations.		$b \to c \to a$		$a \to b \to c$		[guard]effect/event
specifies who performs which tasks with a system is developed		B can execute the same use cases as A.		$b \to a \to c$		С		event[guard]/effect
comprises actors, use cases and functional requirements.		B inherits part of A's associations.				$a \to b \to c$		[guard]effect/event
comprises actors, use cases and functional requirements.		A inherits all of B's associations.		$a \to b \to c$		С		[effect]event/guard
comprises actors, use cases and functional requirements.		B can execute the same use cases as A.		$b \to a \to c$		$a \to b \to c$		[guard]effect/event
specifies who performs which tasks with a system is developed		B inherits part of A's associations.		$a \to b \to c$		$a \to b \to c \to a \to b$		[effect]event/guard
		B can execute the same use cases as A.						
		B can execute the same use cases as A.				$a \to b \to c \to a \to b$		event(guard)/effect
comprises actors, use cases and functional requirements.		B inherits part of A's associations.		c → a → b		$a \rightarrow b \rightarrow c \rightarrow a \rightarrow b$		[effect]event/guard