

Production planning and organization Arkadiusz Gola

Agenda


- **1**. Introduction
- 2. Storyline
- 3. Manufacturing strategy
- 4. Demand forecasting
- 5. Aggregate production plan
- 6. Production flows
- 7. Cycle time
- 8. References

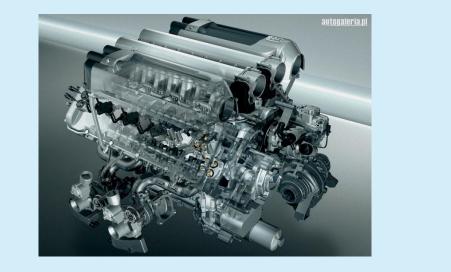
01.

Introduction to the problem of production planning and organization

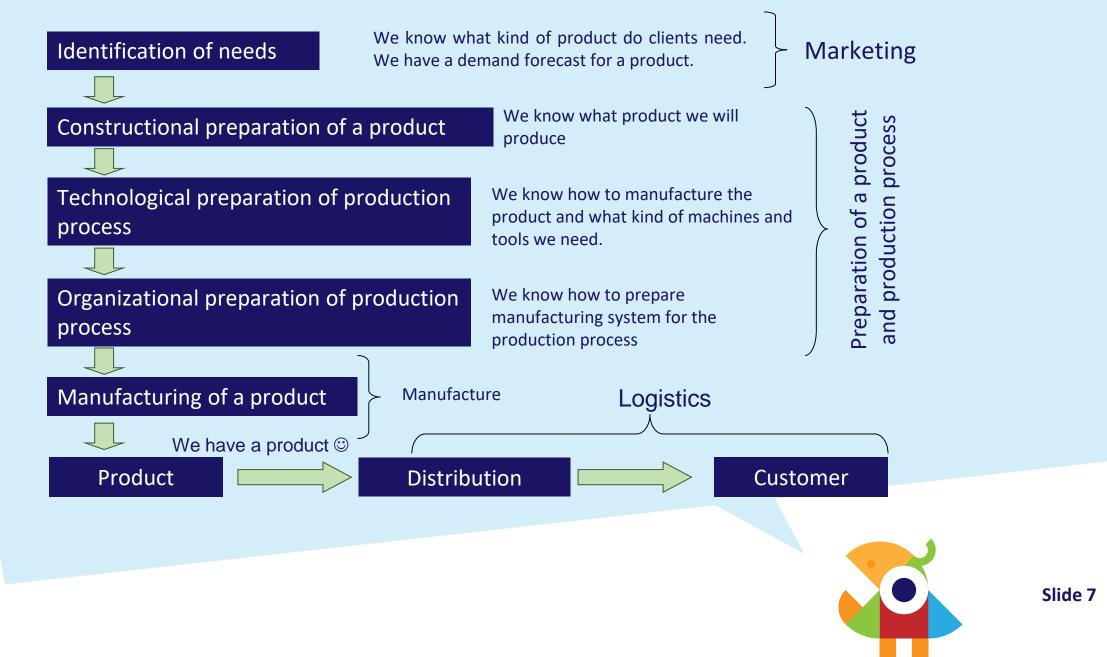
Manufacturing company - a commercial business that converts raw materials or components into finished products.

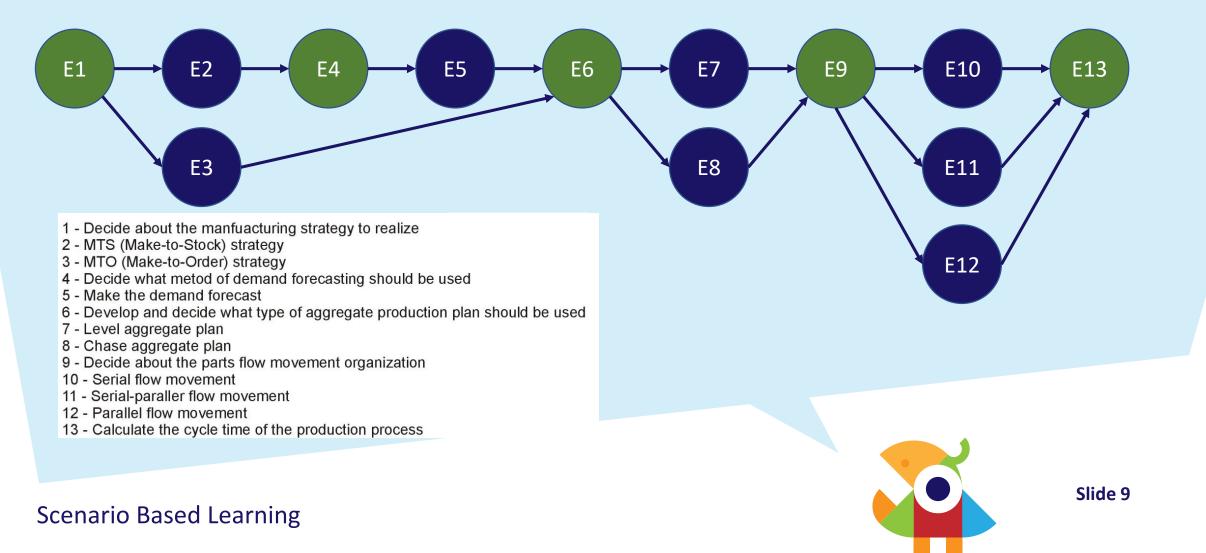
Scenario Based Learning

A simple product (a part) – a homogenous constructional element made from one material and not connected with other elements.

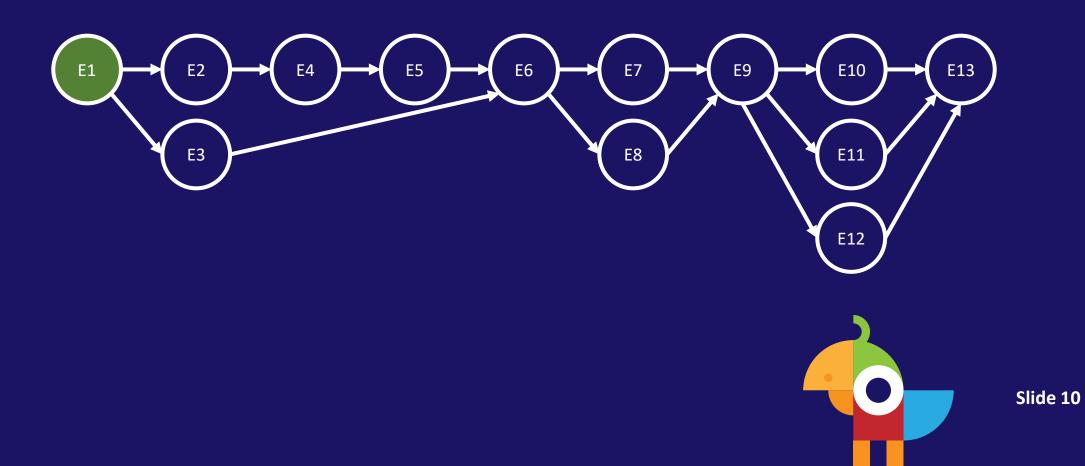


Slide 5


A complex product – at least two simple product connected together. These can be: subassmeblies, assemblies or set of assemblies.


Slide 6

02. Storyline


Storyline

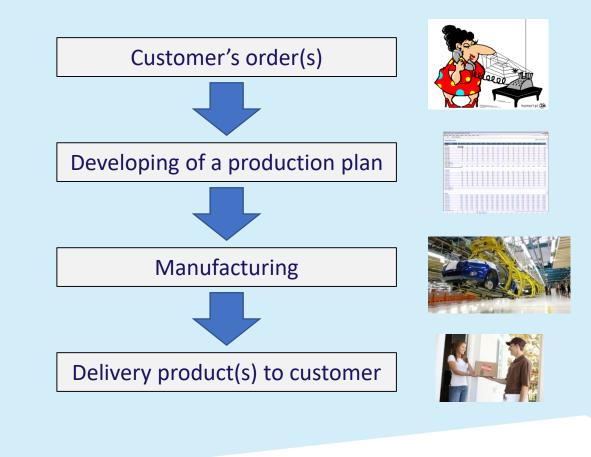
How to organize and plan the production process ?

Manufacturing strategy

Manufacturing strategy [1]

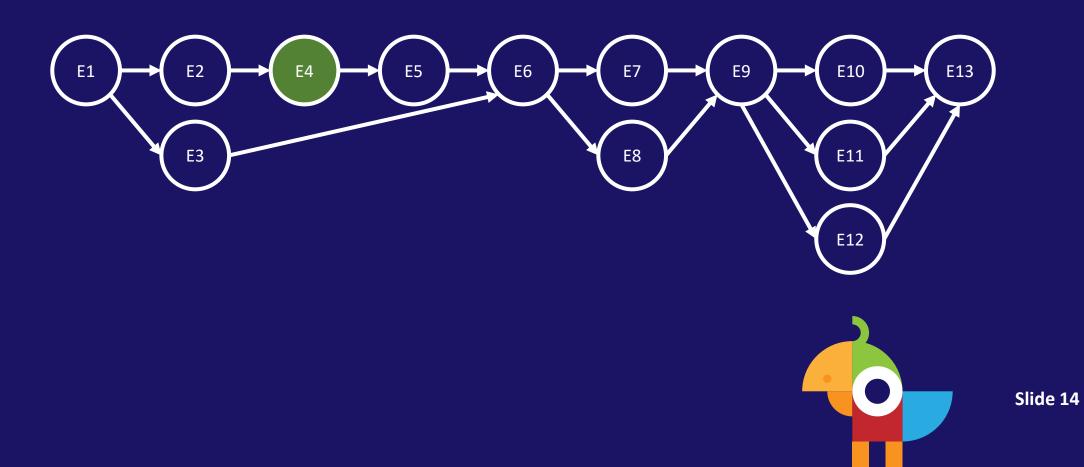
Decide about the manufacturing strategy to be realized

Slide 11


Manufacturing strategy E2

Make-to-Stock (MTS) - traditional production strategy used by businesses to match production with consumer demand forecasts.

Manufacturing strategy E3


Make-to-Order (MTO) - allows consumers to purchase products that are customized to their specifications.

Scenario Based Learning

Quantitative methods for demand forecasting:

- 1. Methods of forecasting for relatively constant demand:
 - naive forecast,
 - the simple average,
 - the simple moving average,
 - the simple moving average with a filter,
 - the weighted moving average,
 - simple exponential smoothing (Brown's method).
- 2. Methods of forecasting for demand with a trend
 - Simple linear regression model,
 - Holt's procedure (double exponential smoothing procedure),
- 3. Methods of forecasting for seasonal demand
 - The method of seasonal indexes,
 - Winter's method.

How to measure that demand is relatively constant?

Coefficient of demand's variability

$$V_z = \frac{\sigma_p}{\bar{v}}$$

 $\sigma_{\rm p}$ – standard deviation of demand v – an average demand in analyzed period

Demand can be recognized as a relatively costant when the coefficien of demand's variability is lower than 5%

Slide 16

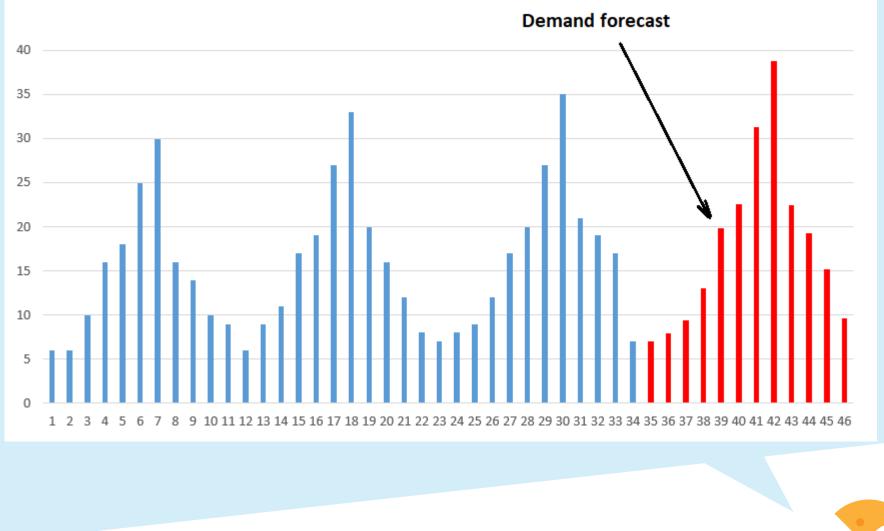
Quantitative methods for demand forecasting:

- 1. Methods of forecasting for relatively constant demand:
 - naive forecast,
 - the simple average,
 - the simple moving average,
 - the simple moving average with a filter,
 - the weighted moving average,
 - simple exponential smoothing (Brown's method).
- 2. Methods of forecasting for demand with a trend
 - Simple linear regression model,
 - Holt's procedure (double exponential smoothing procedure),
- 3. Methods of forecasting for seasonal demand
 - the method of seasonal indices,
 - Winter's method.

The method of seasonal indices allows to forecast the demand for products of seasonal demand

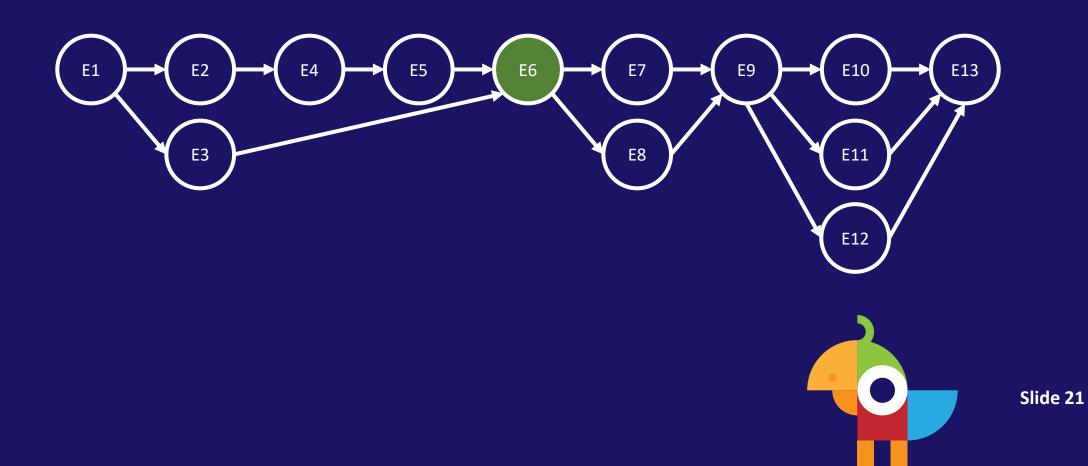
The procedure of forecast developing:

- 1. Calculating the average demand for each of the year,
- 2. Calculating the seasonal coefficient for each quarter or month,
- 3. Calculating the value of average seasonal cooeficient,
- 4. Developing the general forecast for a following year,
- 5. Developing forecasts for each quarter or month.



Slide 18

Make the demand forecast


Slide 19

Scenario Based Learning

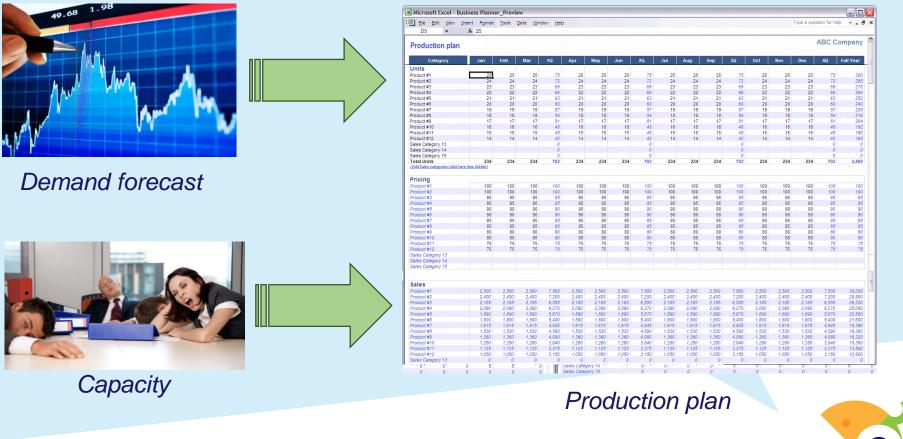
Develop and decide what type of aggregate production plan should be used

Slide 22

"**Production planning** means to fix the production goals and to estimate the resources which are required to achieve these goals. It prepares a detailed plan for achieving the production goals economically, efficiently and in time".

Vollman, T. E., W. L. Berry and D. C. Whybark, Manufacturing Planning and Control Systems, 3 rd edition, Burr Ridge III., Richard D. Irwin Inc., 1992.

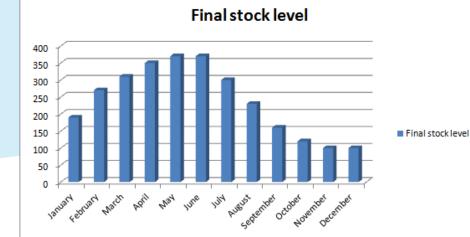
Slide 23

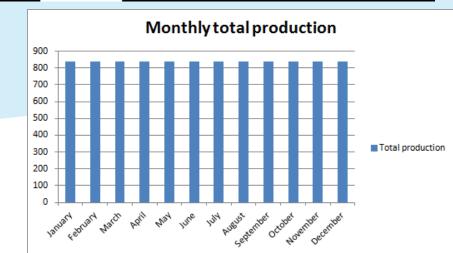

"*Aggregate production planning* is intermediate-range capacity planning that typically covers a time horizon of 2 to 12 months.

The goal of aggregate production planning is to achieve a production plan that will effectively utilize the organization's resources to match expected demand.

Slide 24

When we have forecasted demand of the product – how many product should we produce?


Scenario Based Learning



level - the size of production is equal in every period of time and the difference between the size and production level is compensated by stocks

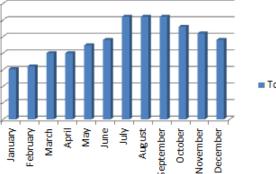
Month	Demand forecast [pieces]	Number of needed man- hours	Number of needed emploees	Actual number of emploees	Regular production [pieces]	Possible production in overtime [pieces]	Acutal production in overtime [pieces]	Number of employments	Number of discharges	Final stock level
January	750	15000	93,75	105	840	85		5	0	190
February	760	15200	95	105	840	85	0	0	0	270
March	800	16000	100	105	840	85	0	0	0	310
April	800	16000	100	105	840	85	0	0	0	350
May	820	16400	102,5	105	840	85	0	0	0	370
June	840	16800	105	105	840	85	0	0	0	370
July	910	18200	113,75	105	840	85	0	0	0	300
August	910	18200	113,75	105	840	85	0	0	0	230
September	910	18200	113,75	105	840	85	0	0	0	160
October	880	17600	110	105	840	85	0	0	0	120
November	860	17200	107,5	105	840	85	0	0	0	100
December	840	16800	105	105	840	85	0	0	0	100 /
			105	\backslash				0	5	
		Total during the year:			10080		0	5	5	2870

Total during the year

<u>chase</u> – the opposite of the compensated plan - the size of production is changeable and suited to the demand forecast. The stock is on the stable level.

Month	Demand forecast [pieces]	Number of needed man- hours	Number of needed emploees	Actual number of emploees	Regular production [pieces]	Possible production in overtime [pieces]	Acutal production in overtime [pieces]	Number of employments	Number of discharges	Final stock level
January	750	15000	93,75	94	752	85		0	6	102
February	760	15200	95	95	760	85	0	1	0	102
March	800	16000	100	100	800	85	0	5	0	102
April	800	16000	100	100	800	85	0	0	0	102
May	820	16400	102,5	103	824	85	0	3	0	106
June	840	16800	105	105	840	85	0	2	0	106
July	910	18200	113,75	106	848	85	62	1	0	106
August	910	18200	113,75	106	848	85	62	0	0	106
September	910	18200	113,75	106	848	85	62	0	0	106
October	880	17600	110	106	848	85	32	0	0	106
November	860	17200	107,5	106	848	85	12	0	0	106
December	840	16800	105	105	840	85	\ 0 /	0	1	106
105										
Total during the year:				the year:	9856		230	12	12	1256
Final stock level					Monthly total production					
107				9	950					
				9	900					
105										
104 +		/				300				
103 -	/				7	750			-	

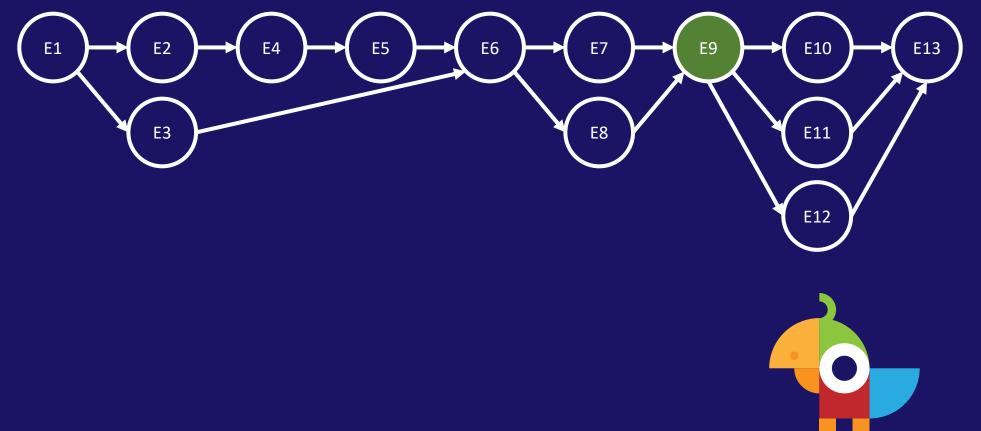
650


600

Final stock level

102

101


100

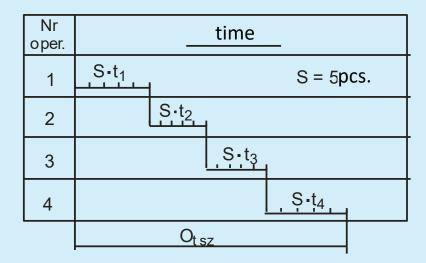
Total production

Production flows

Production flows [19]

Decide about the parts flow movement organization

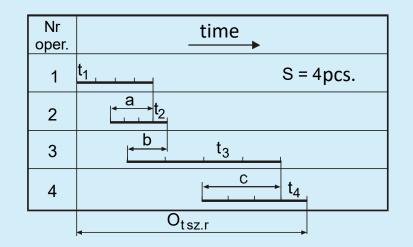
Production flows [19]


The choice of the form of movement (transfer) of products from the workstation to the workstation during technological operations (technological phases) may refer to the following systems:

- serial,
- serial-parallel,
- parallel.

Production flows E10

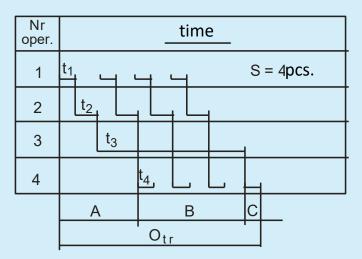
The serial movement of the batch from operation to operation or station to station is such that the machined parts are transferred to the next operation after the previous operation has been performed on all pieces of the batch.


The serial movement system is characterized by:

- the longest production cycle time,
- the lowest number of transport operations,
- high degree of utilization of workstations and continuity production.

Production flows E11

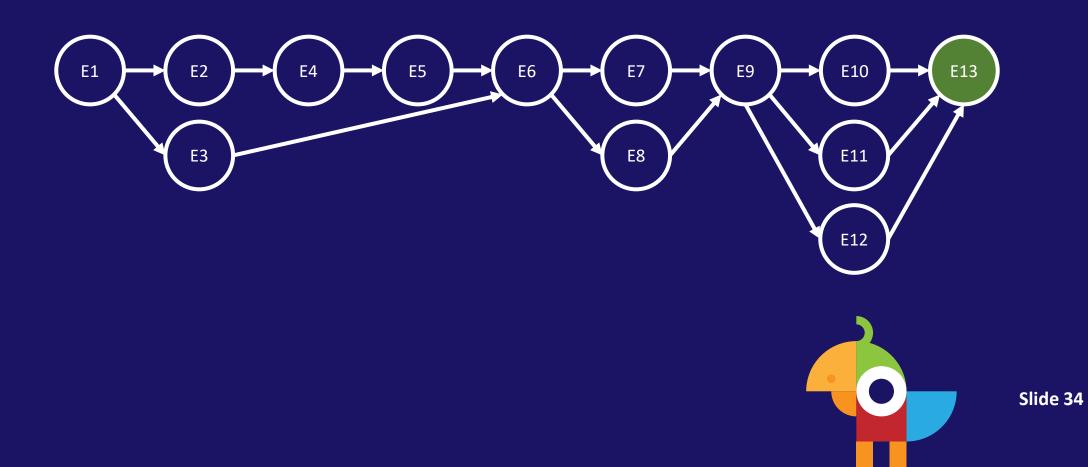
The serial-parallel movement of the batch from operation to operation or from workstation to workstation consists in the fact that the processed parts are transferred to the next operation earlier than the operation is completed on all pieces of the batch:


The series-parallel system is characterized by:

- shortening the length of the production cycle (compared to with serial arrangement),
- increased frequency of transport operations,
- high utilization of workstations and continuity production.

Production flows E12

Parallel batch movement means that individual parts are transferred to the next operation immediately after the previous operation has been performed, which creates a situation where one batch is simultaneously processed in parallel in different operations for several workstations).


The parallel arrangement of the batch flow is characterized by:

- the shortest production cycle,
- increasing the number of transport operations,
- increasing the number of changeovers.

07.

Cycle time

Calculate the cycle time of the production process

Cycle time E13

The cycle time is the period between the beginning and the end of the production process of a product, in which the raw material going through subsequent stages of production, is transformed into a finished product.

The length of the cycle time in the serial detail flow system is calculated according to the formula:

$$O_{tsz} = S \cdot \sum_{j=1}^{n} t_{j} ,$$

where: S – the size of the production batch,

- t_j unit time of the j-th operation,
- \dot{n} consecutive number of operations in the technological process of the detail.

The length of the cycle time in a serial-parallel part flow system is calculated according to the formula:

$$\mathbf{O}_{tsz.r} = S \sum_{j=1}^{n} t_{j} - (S - p_{t}) \sum_{j=1}^{n-1} t_{mn/j; j-1/},$$

where: S – the size of the production batch,

- t_j unit time of the j-th operation,
- \dot{p}_t the size of the shipping batch,
- *n* consecutive number of operations in the technological process of the detail.

Cycle time E13

The length of the cycle time in a parallel flow of details is calculated according to the formula:

$$O_{tr} = p_t \sum_{j=1}^n t_j + (S - p_t) \cdot t_{max.j}$$
.

where: S - the size of the production batch,

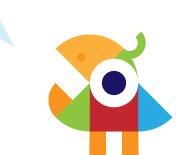
- t_j unit time of the j-th operation,
- \dot{p}_t the size of the shipping batch.
- n consecutive number of operations in the technological process of the detail.

08. <u>Re</u>ferences

References

- 1. Stevenson W.: Operations management, McGraw Hill, New York, 2021.
- 2. Heizer J.H.: Operations management: sustainability and supply chain management, Pearson, London 2020.
- 3. Slack N., Brandon-Jones A.: Operations management. Pearson, London, 2019.
- 4. Bozarth C.C., Handfield R.B.: Introduction to operations and supply chain management, Pearson Education Limited, 2019

Università di Pisa


1542

E R R E **Q** U A D R O

Research over Research

Universidad Zaragoza

